DRAFT ENGINEERING EVALUATION

Brocade Communication. P#14982-A#13409 1600 Technology Dr. San Jose, CA 95110

BACKGROUND

Sigma Tech on behalf of Brocade Communication has applied for an Authority to Construct and/or Permit to Operate the following equipment:

S-6 Emergency Standby Generator Set: Diesel Engine Make: Cummins; Model: QST30-G5; Rated Horsepower: 1490 HP.

The standby generator set will be used at 1600 Technology Dr., San Jose, CA 95110. It will provide emergency power (in the event of a blackout) for all essential electrically powered equipment at the above site. The emergency engine must be periodically tested to ensure that it will generate electricity when needed.

EMISSIONS SUMMARY

Annual Emissions:

The 1490 HP diesel engine at S-6 is CARB Certified and the emission factors are listed below in Table (1). For this report, it is assumed that the emission value of Total Unburned Hydrocarbons (HC) is equivalent to the emission value of POC.

Table (1)

Emission Factors				
Component	Emission (g/kw·hr)	Emission (g/bhp∙hr)		
NOx	8.50	6.339		
CO	0.70	0.522		
POC	0.40	0.298		
PM_{10}	0.17	0.127		
SO ₂ *	0.25	0.184		

*The emission factor for SO2 is from Chapter 3, Table 3.4-1 of the EPA Document AP-42, Compilation of Air Pollutant Emission Factors. SO₂ 8.09E-3 (% S in fuel oil) lb/hp-hr = 8.09E-3 (0.05% S) (454 g/lb) = 0.184 g/hp-hr

Maximum Emissions in Tons per year:

Table (2)

Maximum Emissions in Tons per year			
NOx	= (6.339 g/bhp-hr)(1490 hp)(50 hrs/yr)(11b/453.6g) = 1	041.054 lb/yr = 0.521 TPY	
CO	= (0.522 g/bhp-hr)(1490 hp)(50 hrs/yr)(11b/453.6g) =	85.734 lb/yr = 0.043 TPY	
POC	= (0.298 g/bhp-hr)(1490 hp)(50 hrs/yr)(11b/453.6g) =	48.991 lb/yr = 0.024 TPY	
PM_{10}	= (0.127 g/bhp-hr)(1490 hp)(50 hrs/yr)(11b/453.6g) =	20.821 lb/yr = 0.010 TPY	
SO_2	= (0.184 g/bhp-hr)(1490 hp)(50 hrs/yr)(11b/453.6g) =	30.252 lb/yr = 0.015 TPY	

Maximum Daily Emissions:

A full 24-hour day will be assumed since no daily limits are imposed on intermittent and unexpected operations. Check Table (3) for emissions per day.

Table (3)

	Maximum Daily Emissions				
NOx	= (6.339 g/bhp-hr)(1490 hp)(24 hrs/day)(11b/453.6g) =	499.706 lb/day			
CO	= (0.522 g/bhp-hr)(1490 hp)(24 hrs/day)(11b/453.6g) =	41.152 lb/day			
POC	= (0.298 g/bhp-hr)(1490 hp)(24 hrs/day)(11b/453.6g) =	23.516 lb/day			
PM_{10}	= (0.127 g/bhp-hr)(1490 hp)(24 hrs/day)(11b/453.6g) =	9.994 lb/day			
SO_2	= (0.180 g/bhp-hr)(1490 hp)(24 hrs/day)(11b/453.6g) =	14.697 lb/day			

Plant Cumulative Increase: (tons/year): Cumulative increase from the plant is as shown in Table (4).

Table (4)

Plant Cumulative Increase				
Pollutant	Existing	New	Total	
	tons/yr.	tons/yr.	tons/yr.	
NOx	0	0.271	0.271	
CO	0	0.022	0.022	
POC	0	0.013	0.013	
PM10	0	0.005	0.005	
SO_2	0	0.008	0.008	
NPOC	0	0.000	0.000	

Toxic Risk Screening:

The toxic emission of diesel particulate exceeds the District Risk Screening Trigger level, as shown below in Table (5). A Risk Screening Analysis has been performed.

Table (5)

Toxic Emission Of Diesel Particulate						
Source	PM_{10}	HP	Annual	Diesel	Trigger	Risk Screen
	Emission		Usage	Exhaust	Level (lb/yr)	Required?
	Factor		(Hours/year)	Particulate		(Yes/No)
	(g/HP-hr)			Emissions		
				(lb/year)		
6	0.127	1490	50	20.82	0.58	Yes

Calculation:

 $\begin{array}{ll} PM_{10} \ from \ CARB \ Certified \ levels \ 0.17 \ (g/kW-hr) \ / \ 1.341 \ (hp/kW) = 0.127 \ (g/hp-hr) \\ Diesel \ Exhaust \ Particular \ Emission \ (lb/yr.) & = PM_{10} \ (g/hp-hr) \ * \ HP \ * \ Annual \ Usage \ (hr/yr) \\ & = 0.127 \ * 1490 \ * 50 \\ & = 9461.5g/yr \ / \ 453.6 \ g/lb \\ & = 20.82 \ lb/yr \end{array}$

Since the engine meets Best Available Control Technology for Toxics (TBACT) requirements (emission level of 0.15 g/hp-hr or less), the maximum acceptable cancer risk is estimated at 10 in a million. Results from the health risk screening analysis show that for 50 hours of operation per year, excluding periods when operation is required due to emergency conditions, the risk to the maximally exposed nearest receptor is 6.6 in a million. The analysis was performed at a PM_{10} emission of 20.82 lb/year (see the Nov 03, 2005 memo from the Toxics Evaluation Section). In accordance with the District's Risk Management Policy, this risk level is considered acceptable.

Public Notification:

Since this plant is located within 1000 ft of the following school, public notification is required.

1. Walter L. Bachrodt Elementary School

STATEMENT OF COMPLIANCE

S-6 is subject to the monitoring and record keeping requirements of Regulation 9-8-530 and the SO2 limitations of 9-1-301 (ground-level concentration) and 9-1-304 (0.5% by weight in fuel). Regulation 9-8-530 requirements are incorporated into the proposed permit conditions. Compliance with Regulation 9-1 is expected since diesel fuel with a 0.05% by weight sulfur is mandated for use in California. Like all sources, S-6 is subject to Regulation 6 ("Particulate and Visible Emissions"). These engines are not expected to produce visible emissions or fallout in violation of this regulation and they will be assumed to comply with Regulation 6.

This application is considered ministerial under the District's proposed CEQA guidelines (Regulation 2-1-312) and therefore is not subject to CEQA review.

Best Available Control Technology (BACT):

In accordance with Regulation 2, Rule 2, Section 301, BACT is triggered for any new or modified source with the potential to emit 10 pounds or more per highest day of POC, NPOC, NOx, CO, SO₂ or PM₁₀.

Based on the emission calculations above, the owner/operator of S-6 is subject to BACT for the following pollutants: POC, NOx and CO. BACT 1 levels do not apply for 'engines used exclusively for emergency use during involuntary loss of power' as per Reference b, Document 96.1.2 of the BAAQMD BACT Guidelines for IC Engines. Hence, the owner/operator has to the meet BACT 2 limits presented below in Table (6).

Table (6)

Tuble (0)				
BACT 2 Limits				
POLLUTANT	BACT 1. Technologically Feasible/ Cost Effective	TYPICAL TECHNOLOGY		
	2. Achieved in Practice 3. TBACT			
POC	1. 0.30 g/bhp-hr [62 ppmvd @ 15% O ₂] ^{a,b} 2. 1.5 g/bhp-hr [309 ppmvd @ 15% O ₂] ^b	Catalytic Oxidation and CARB or EPA (or equivalent) low-total hydrocarbon emitting certified engine ^{a,b} CARB or EPA (or equivalent) low-total hydrocarbon emitting certified engine b,c		
NOx	1. 1.5 g/bhp-hr [107 ppmvd @ 15% O ₂] ^{ab} 2. 6.9 g/bhp-hr [490 ppmvd @ 15% O ₂] ^{ab,c} 3. 69 g/bhp-hr [490 ppmvd @ 15% O ₂]	 Selective Catalytic Reduction (SCR) + Timing Retard + Turbocharger w/ Intercooler ^{a,b} Timing Retard ≤ 4° + Turbocharger w/ Intercooler ^{a,b,c} Timing Retard ≤ 4° + Turbocharger w/ Intercooler 		
СО	1. n/s 2. 2.75 g/bhp-hr [319 ppmvd @ 15% O2] ^{b,c}	Catalytic Oxidation ^b CARB or EPA (or equivalent) low-CO emitting certified engine b,c		

For POC, NOx, and CO, the emission limits set by BACT 2 are met, as shown in Table (7) below.

Table (7)

Analysis of BACT2 Limits				
	Engine Emission	Emission Factor	Have the	
	Factors with	Limits as set by	limits	
Pollutant	Catalyst (g/hp-hr)	BACT 2 (g/hp-hr)	been met?	
POC	0.298	1.5	YES	
NOx	6.339	6.9	YES	
CO	0.522	2.75	YES	

Therefore, S-6 is determined to comply with the BACT 2 limits for POC, NOx and CO. Since CARB certification data was used to establish the POC, NOx and CO emission factors, the BACT 2 emission limits have not been incorporated into the permit conditions and are assumed to be complied with through the design standards demonstrated by the CARB certification testing.

Offsets: Offsets must be provided for any new or modified source at a facility that emits more than 10 tons/yr of POC or NOx. Based on the emission calculations above, offsets are not required for this application.

PSD, NSPS, and NESHAPS do not apply.

Airborne Toxic Control Measure (ATCM): This facility will comply with new ATCM. Compliance with the following permit conditions will meet the ATCM requirements.

PERMIT CONDITIONS

Condition Number 22436

Engine Family: 5CEXL030.ABA Engine Model Number: QST30-65 Standby Power Rating: 1490 BHP

Rated Speed: 1800 RPM

Condition for S-6 Emergency Standby Generator Set, at Plant #14982

1. The owner or operator shall operate S-6, stationary emergency standby engine, only to mitigate emergency conditions or for reliability-related activities (maintenance and testing). Operating while mitigating emergency conditions and while emission testing to show compliance with this part is unlimited. Operating for reliability-related activities are limited to 50 hours per year.

(Basis: "Stationary Diesel Engine ATCM" section 93115, title 17, CA Code of Regulations, subsection (e)(2)(A)(3)

- 2. The owner/operator shall not operate the emergency standby engine(s) for testing or maintenance between 7:30 AM and 3:30 PM on days when schools are in session. [Basis: ATCM]
- 3. The Owner/Operator shall equip the emergency standby engine(s) with:
 - a. a non-resettable totalizing meter with a minimum display capability of 9,999 hours that measures the hours of operation for the engine.

(Basis: "Stationary Diesel Engine ATCM" section 93115, title 17, CA Code of Regulations, subsection (e)(4)(G)(1)

4. Records: The Owner/Operator shall maintain the following monthly records in a

District- approved log for at least 36 months from the date of entry. Log entries shall be retained on-site, either at a central location or at the engine's location, and made immediately available to the District staff upon request.

- a. Hours of operation (maintenance and testing).
- b. Hours of operation for emission testing.
- c. Hours of operation (emergency).
- d. For each emergency, the nature of the emergency condition.
- e. Fuel usage for engine.
- f. CARB Certification Executive Order for the engine.

(Basis: "Stationary Diesel Engine ATCM" section 93115, title 17, CA Code of Regulations, Subsection (e)(4)(I), Regulation 1-441, Toxics)

RECOMMENDATION

Issue an Authority to Construct to Brocade Communication Located at 1600 Technology Dr. San Jose, CA 95110:

EXEMPTIONS

None.

By:	Madhav Patil	Date: 11/04/05

Air Quality Engineering

	Acronyms				
S	Source	NPOC	Non- Precursor Organic Compound		
HP	Horse Power	TBACT	Best Available Control Technology for Toxics		
CARB	California Air Resource Board	BACT	Best Available Control Technology		
NOx	Oxides of Nitrogen as NO ₂	BAAQMD	Bay Area Air Quality Management District		
CO	Carbon Monoxide	IC Engines	Internal Combustion Engines		
POC	Precursor Organic Compound	EPA	Environmental Protection Agency		
HC	Hydrocarbons	SCR	Selective Catalytic Reduction		
PM_{10}	Particulate Matter	PSD	Prevention of Significant Deterioration		
SO_2	Sulfur Dioxide	NSPS	New Source Performance Standard		
O_2	Oxygen	NESHAPS	National Emission Standard for Hazardous Air Pollutants		
ppmv	parts per million by volume	CEQA	California Environmental Quality Act		
ATCM	Airborne Toxic Control Measure				